Preview
Link Preview
Technology Networks
The Evolving Field of Cancer Biomarkers
For more than a decade, cancer biomarkers have been heralded for their promise in risk prediction, diagnosis, prognosis and treatment response.1Historically, cancer biomarker discovery has focused on mutations in genes (think germline BRCA mutations or IDH in glioma) or the presence of overexpressed proteins that determine whether targeted drugs will work (e.g. EGFR inhibition using gefitinib). Much research has also focused on finding molecules in the blood that can signal the presence of cancers. The cancer antigen (CA)125 and prostate specific antigen (PSA) are examples that are used alongside other tests to diagnose ovarian and prostate cancers, respectively. More recently, the concept of detecting circulating tumor DNA through “a liquid biopsy” has moved closer to clinical reality.2 Given the complexity of cancer, it’s arguably unlikely that single molecules will work as clinically meaningful biomarkers for cancer. Today, biomarker discovery involves detecting patterns – characteristics or phenotypes that can be measured and monitored throughout a patient’s journey. Here, we look at two approaches being explored in this evolving field.
For more than a decade, cancer biomarkers have been heralded for their promise in risk prediction, diagnosis, prognosis and treatment response.1Historically, cancer biomarker discovery has focused on mutations in genes (think germline BRCA mutations or IDH in glioma) or the presence of overexpressed proteins that determine whether targeted drugs will work (e.g. EGFR inhibition using gefitinib). Much research has also focused on finding molecules in the blood that can signal the presence of cancers. The cancer antigen (CA)125 and prostate specific antigen (PSA) are examples that are used alongside other tests to diagnose ovarian and prostate cancers, respectively. More recently, the concept of detecting circulating tumor DNA through “a liquid biopsy” has moved closer to clinical reality.2 Given the complexity of cancer, it’s arguably unlikely that single molecules will work as clinically meaningful biomarkers for cancer. Today, biomarker discovery involves detecting patterns – characteristics or phenotypes that can be measured and monitored throughout a patient’s journey. Here, we look at two approaches being explored in this evolving field.

Issue #3
- Declined by admin
- Type of issue
- IV page is missing essential content
- Reported
- Apr 24, 2019
(in previous issue I can not select "View app note link"...)